

Modeling and Managing Resource Utilization in Process,
Workflow, and Activity Coordination

Barbara Staudt Lerner*, Anoop George Ninan, Leon J. Osterweil, Rodion M. Podorozhny
Laboratory for Advanced Software Engineering Research

Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

+1 413 545 2013
 lerner@cs.williams.edu {agn, ljo, podorozh}@cs.umass.edu

* Currently at Department of Computer Science, Thompson
Computing Laboratory, Williams College, Williamstown,
MA 01267, USA. +1-413-597-4215.

ABSTRACT
Specifications of workflow, process, and activity
coordination systems focus on the assignment of work to
human and software agents and the dataflow required to
support those activities. The runtime behaviors of these
systems vary widely depending upon the availability of
agents and other needed resources. Thus the precise
specification of resources needed by, and available to, a
system is an important basis for reasoning about and
optimizing system behavior. Previous resource models used
in management and workflow have lacked the rigor to
support powerful reasoning and optimization. Some
resource models for operating systems have been quite
rigorous, but overly narrow in scope. This paper presents a
meta-model for creating precise models of such resource
types as humans, tools, computation platforms, and data,
and the various associations between these types that are
needed to support intelligent allocation of these resources.
We also present examples of the use of this meta-model.
This paper also describes a prototype resource allocation
and management system that implements these approaches.
This prototype is designed to be a separable, orthogonal
component of a system for execution of processes defined
as hierarchies of steps, each of which incorporates a
specification of resource requirements.

Keywords
Resources, Resource Management, Workflow, Activity
coordination, Agent coordination.

1 INTRODUCTION
Much research in such areas as software process, workflow,
CSCW and multi-agent systems focuses on devising
mechanisms for specifying coordination of diverse
activities to accomplish complex tasks. Most approaches in
these domains represent the overall task to be accomplished
as a synthesis of lower-level tasks. In addition, different
approaches incorporate, to differing degrees of formality,
the specification of the artifacts that these various tasks use

and produce. Some also have mechanisms to specify the
agents and resources to be used to support task execution.

The differences in emphasis on these different components
of activity coordination specification are often clearly due
to differences in goals. Some specifications are often
intended to be largely illustrative and advisory, being
intended for use in helping humans come to common
understandings. But many specifications are intended to be
sufficiently rigorous that they can be used as prescriptions
for computer support of resource allocation and scheduling
through the application of tools.

Our past work has this latter goal. We have concentrated on
developing and evaluating resource specification
formalisms that are sufficiently rigorous that they can be
used to reason about such complex activities as the
processes used to develop large software systems and how
to support these processes most efficiently. This has
demonstrated the need for structuring the tasks that
comprise the larger overall processes and the need for
being articulate and complete in specifying the artifacts that
these tasks use and produce.

Operating systems research long ago demonstrated the need
for reasoning about resources in parallelizing, coordinating
and optimizing the execution of system processes. Clearly,
the abundance of resources can enable execution of tasks in
parallel, thereby speeding up accomplishment of larger
goals. This same phenomenon is also clearly observable in
broader classes of activity coordination. If a software
design activity requires the use of a specific design tool,
then the various members of a design team can work in
parallel only if multiple licenses of the tool are available.
Similarly, if the activity is decomposed into several parallel
design subtasks, the design process may proceed faster, but
only if more than one qualified designer is available to
work on the project.

 2

The lack of resources causes contention, occasions the need
for some tasks to wait for others to complete, and generally
slows down accomplishment of larger goals. Often
potential delays can be avoided or reduced by using
resource analysis to identify ways in which tasks can be
made to execute in parallel that avoid resource contention.

Problems in operating systems like deadlocks and livelocks
are very real for the larger class of activity coordination
problems as well. It is not hard to devise a process in which
a requirements analyst awaits the results of a prototype
activity in order to complete requirements specification,
while a prototyper awaits the completion of the
requirements specification to complete the prototype.

In addition to the scheduling concerns outlined above,
reasoning about resources requires an understanding of the
similarities and differences among resources as well as the
precise needs of the activities being coordinated. With this
understanding it is possible to identify in which situations
only a particular resource will suffice and in which
situations any of a class of resources may be acceptable for
the task. This identification of critical resource needs can
also facilitate the identification of likely bottlenecks in the
execution of a process or workflow.

Having the ability to describe resource classes and their
membership also facilitates improvements in the execution
of coordinated activities without requiring change to the
activity specification itself. For example, by adding a
second resource compatible with some critical resource, the
throughput of the coordinated activity should improve. A
superior resource may also result in qualitative
improvements to the output of the activity, again without
changing the activity specification itself.

In our process work, we would like to create processes that
use a wide variety of resources. In addition, we would like
to be able to treat a group of resources, say a team of
humans, as a single allocatable unit and support effective
resource sharing among tasks through fractional allocation
policies. We would like to be able to identify where
deadlocks, race conditions and starvation are possible, so
that we can assure that they do not occur. We would also
like to be able to infer when additional resources can speed
up execution of the overall activity, and when there are
extra resources that may be reassigned. We would like to
be able to manage contention for popular resources and
those that require mutual exclusion.

The preceding sorts of reasoning and control seem to us to
be impractical unless the resources needed by tasks are
specified. As with most software analyses, these sorts of
reasoning can be more powerful and precise when the rigor
with which needed resources are specified is more powerful
and precise. Thus in this work, we propose a powerful and
precise resource specification formalism to provide a basis
for the kinds of analyses indicated above.

2 MOTIVATION
As an example to motivate our work, we show how
management of resources specified by our modeling
formalism can improve the effectiveness of a small
software development team. Consider a team whose
members have a variety of skills. Besides the people, other
resources include licenses for tools like Rational Rose and
Visual C++. Assume that the team is currently in the later
stages of development of a product, and is both completing
implementation and also carrying out some redesign that is
required in order to fix bugs that have been detected in
earlier work. The progress of the team may be hampered
due to lack of resources. In particular there are probably
times when having more qualified designers or coders
would help. More likely it could be that the progress of the
team could be expedited if the team had available an
additional Rose or VC++ license.

A reasonable scenario here might be that the organization
has money to purchase only one additional license, and it
would be important to decide in some way, the best choice,
a Rose license or a VC++ license. Our resource
specification capability is intended to be a facility for
supporting informed decisions of precisely this sort. It
might be used as the basis of schedule reduction achievable
through one purchase or the other. It might be used to study
increases in human resource utilization, or it might be used
to suggest ways in which the process using this model itself
might be altered to reduce the schedule without having to
purchase new licenses at all. Of course, a small example
like this can easily be analyzed without automated tools. As
the number of resources increases, the complexity of their
interactions, and the complexity of processes being
supported increases, these analyses become more difficult
to do without automated support.

We now introduce our resource modeling and management
approach and indicate why it seems to us to be effective in
dealing with problems such as these.

3 RESOURCE MODEL ABSTRACTIONS

Our resource manager is a component of a larger system
that is used to program and execute processes [10], support
reasoning about real-time systems, or be integrated into a
planning system, for example. Since we believe that this
model may be used to specify resources in any domain, we
have designed the meta-model to support a wide range of

RC

SRC

CSRC CRI

RI

Fig 1: Abstract representation of our Resource Model

 3

resource types, which may be physical entities like robots,
electronic entities like programs or data, people etc.

In Fig 1 above, we depict a representation of our resource
meta-model. The boxes indicate the various types of
resources we support. The thin solid edges are is-a links
connecting a resource class with a more specific resource
class. The thick solid edges indicate type-instance
relationships between schedulable resource classes and
instances. The dashed edge is a whole-part relation,
discussed later in this section. The ball at the end of an
edge denotes cardinality greater than 1.

The elements of this meta-model are used to create
resource models that represent those entities of an
environment that may be required, but for which an
unlimited supply cannot be assumed. A resource model is
defined as a collection of Resource Classes (RC) and
Resource Instances (RI). A Resource Instance represents
a unique entity in the environment, such as a specific

person, printer or document. A Resource Class represents a
set of resources (or classes) that have some common
properties. Some resource classes may be Schedulable. A
Schedulable Resource Class (SRC) is one whose
instances are similar enough that the user of the resource
model might not care which instance is chosen. For

Fig 2. Example of a Static Resource Model

DTeam1

B
 C

DTeam2

C
 D

CTeam1
 CTeam2

D
 E

 E
 F

DocTeam1

G
 H

Resource

Human
 Project

Team

Software
 Hardware

….. Design
Team

Coding
Team

Doc.
Team

Manager

Designer

Docum -
enter

 …

A
 B

 C
 D

 E
 F

 G
 H

Coder

Da ta

Agent

Tools

Reqs.

Req. Spec
 IsDocum -

ented

Design

Coding

Rational
Rose

Visual C++

Computer
 Printer

C4
 C3

 C2
 C1

P2

P1

DTeam1

DTeam2

CTeam1

CTeam2

DocTeam1

Windows
 Linux

Fig 2b. Whole - Part Associations

Fig 2a. is - a hierarchy

ClassReserver

Resource Class

Schedulable Resource Class

Composite Schedulable Resource Class

Resource Instance

Composite Resource Instance

Whole-part edges (Fig 2b)

is-a edges
LEGEND

type-instance edges

 4

example, Printer could be a Schedulable Resource Class.
Other resource classes are unschedulable (RC) and are
more abstract. They are intended to be more for an
organizational convenience when defining resource models.
Both resource classes and instances may be collected to
form groups or composite objects. Thus a Composite
Resource Instance (CRI) is one that forms a group of
other Resource Instances, composite or otherwise. A
Composite Schedulable Resource Class (CSRC) can
have other Composite Schedulable Resource Classes and/or
Composite Resource Instances. An example of a Composite
Resource Instance is a specific team of humans or a cluster
of printers whereas an example of a Composite Schedulable
Resource Class would be a DesignTeam class, say, that had
several teams of designers as instances. Therefore, any
resource allocation method applicable to design teams in
general may be applied to such a class.

Resource Attributes
We represent each resource as a set of typed attribute-value
pairs. There is a small set of predefined attributes. The
predefined attributes required of all resources are: a Name,
a Textual Description of the resource and a set of Criteria
Assertions. (Criteria assertions are described later in this
section.)

Schedulable Resource Classes have Unit attributes. The
unit of a resource is a label that describes how the resource
is measured. For example, an electrical circuit might be
measured in amps, or a person’s time might be measured in
number of hours per day. All elements further down the
hierarchy of a class assume identical unit attributes.
Resource Instances have Capacity and Availability
attributes. The Capacity of an instance indicates the
maximum acquirable quantity of the instance. Availability
attributes track use of resources indicating the quantity of a
resource that is available for use. Also needed are
AllocatedTo and AmountAllocated attributes, described
later in this section.

In addition, the resource modeler can associate user-defined
attributes that are unique to the specific resource being
modeled. The attribute values of a resource serve to identify
the resource and distinguish it from other similar resources.
For example, a Printer may have an attribute indicating
whether it is a color printer or not.

Resource Associations
The resource modeling mechanism supports the definition
of three types of associations among the types elaborated
above: is-a associations, whole-part associations and
requires associations.

is-a hierarchy

The relationship between a resource class and its members
is expressed with an is-a link. The resource classes and
their is-a links form a singly rooted tree. The root of the
tree is a predefined Resource Class called Resource. A

Resource Instance may belong to many resource classes;
hence the entire model forms a singly rooted DAG. Each
child of an is-a link inherits all attributes of its parents. If
the same attribute name appears in multiple parents and is
originally defined in separate classes (i.e., not in a common
ancestor), the instance contains all attributes, qualified by
class name. So for example, if Becky is an instance that
belongs to both the Programmer and the Translator classes,
and both have Language attributes, then she could have
C++ and Java as attribute values for the
Programmer.Language attribute and English and French
for her Translator.Language attribute. An example of an is-
a hierarchy is shown in Fig. 2a.

Whole-Part Associations

The semantics of a Whole-Part association is that a
resource is physically or logically part of a composite
resource. Both the composite and the part are schedulable
resources (instances) so that resources may be used as a
whole, or parts of it may be used individually. An example
of a whole-part association is that a team is a composite
whose parts are the team members (see more examples in
Fig. 2b). Any assignment to a team is therefore a joint
assignment to the team members.

Whole-Part associations have a Contribution attribute that
defines how much of the part’s capacity is devoted to the
composite. The capacity of a Composite Resource Instance
is the sum of the contributions of each constituting
Resource Instance. Therefore, the capacity of a Composite
Resource Instance changes dynamically as Resource
Instances join or leave the group. An instance can be a part
of multiple composites as long as it does not over-commit
its own capacity. For example, a programmer may work for
more than one team.

To elucidate, let CRI represent a team, and each RIi
represent constituting team members. Let Xi be the capacity
of each RIi, X be the capacity of the CRI and xi be
contributions of each RIi to the CRI, where 0 <= xi <= Xi.
For i=1 to n, if xi were not indicated, xi = Xi, by default.
Therefore, the range of values that the capacity of CRI can
assume may be expressed as �� � � ;� � � � ;i and in
general, Capacity(CRI) = � [i. Note that since a given RI
may be a part of more than one CRI say CRI1 … CRIm,
then all the allocations may be satisfied at a time, only if,
for j=1 to m, �Contribution(RI, CRIj) <= Capacity(RI).

Requires Associations

Functional dependencies between resources are captured
with a Requires association. This indicates that in order for
one resource to be useful, it needs another. For example, a
piece of software requires a computer that is configured to
run it. The semantics of the Requires relationship differs
depending on the type of the destination node of the edge.
In general, if a Requires edge falls on an instance, it
implies that a specific instance is required by another

 5

resource. However, if a Requires edge falls on a
Schedulable Resource Class, it implies that any one of the
instances of that class is required.

There are five attributes we may associate with Requires
edges. The first is the AmountRequired attribute. This
attribute is specified when exclusive use of an instance is
not required, i.e., only a fraction of the resource’s capacity
is required. This allows for fractional allocation of
resources and enables resource sharing. This is necessary to
support parallel tasks that need to share resources. The
second is the Cardinality attribute. This attribute may be
specified on Requires edges that fall on Schedulable
Resource Classes only. Other attributes are described later
in this section.

If a Requires edge originated from a resource class, all
instances of the class would automatically inherit this
requirement. The third attribute, the Name, is used to allow
overriding instead of inheritance. Instances can override an
inherited edge by specifying their own edge with the same
name. If however, a new Requires edge, with a name
different from the one that exists at its parent’s level, is
added, the requirement for this instance, would be
considered additive, to what is required at the class level.

Now we elaborate the semantics of the attributes just
mentioned. Let the AmountRequired attribute be Y units on
an edge falling on a Resource Instance, where Y <=
Capacity(Resource Instance). If this attribute is not
specified, the resource manager, by default, allocates the
instance, in its entirety. In the case of a composite resource
instance, if Y < Capacity(CRI), then (Y/Capacity(CRI) *
100%) of each constituent Resource Instance’s contribution
to its composite would get allocated. That is, the
contribution of each part to the composite would be
reduced proportionally.

For more concrete examples of this usage of the Requires
edge, refer to the resource model example in Fig 2. Let the
Unit attribute of the Printer class be pages/day. Let P1 and
P2 have Capacities of 200 and 500 units respectively. If A
is a Manager who requires a dedicated printer, P1, there
would exist a Requires edge from A to P1. If F is a
documenter who needs no more than 50 units of P2, this
may be represented as a Requires edge from F to P2, with
AmountRequired set to 50.

For Requires edges falling on Schedulable Resource
Classes, if only the Cardinality attribute is specified to be
m on the edge, this implies the requirement of m instances
of a Schedulable Resource Class. If this attribute is not
specified, the resource manager, by default, allocates one
instance in its entirety. If both the AmountRequired and
Cardinality attributes are specified on this edge to be Y
units and m, this implies the requirement of Y units each of
m instances of the class.

We now present more concrete cases where Requires edges
may fall on Schedulable Resource Classes. In Fig. 2, if
DocumentationTeam1 requires 150 pages/day of printing
capacity of one Printer instance and the team is not
bothered which particular printer instance, P1 or P2, is
acquired for the purpose, then a Requires edge from
DocTeam1 to Printer, with AmountRequired set to 150
units serves the purpose. The second example is that of
CodingTeam2 requiring 2 licenses of a CodingTool. So let
the Unit attribute of Coding Tool be the number of licenses
and given that VC++ is the only coding tool available, this
would be satisfied by a Requires edge from CTeam2 to
CodingTool with Cardinality attribute set to 2. If its
availability is 2 or more licenses, 2 copies get allocated.

Two other attributes may be defined on Requires edges:
Fixed and Proportional. These attributes take boolean
values. By default, Fixed is not set and Proportional is set.
Fixed allocation indicates that the capacity required is
constant, whereas proportional allocation indicates that the
amount required is proportional to that required of the
requirer, dedicated to the activity. The following examples
describe this further.

Let R1, R2, R3 be three resource elements (classes or
instances). Let R1 require 10 units of R2 with the
PROPORTIONAL attribute set, and R2 require 5 units of
R3, with FIXED attribute set. If Capacity(R1) = 20 units,
and only 10 units of R1 are required, then only 5 units of
R2 is allocated; and irrespective of what amount of R2 is
allocated, a fixed amount of 5 units of R3 is always
allocated.

Resource Allocation State

Once a resource is allocated, it is necessary to maintain to
which specific task or entity it has been allocated to and by
what amounts. The maintenance of such information allows
easy manipulation of allocated amounts when the need
arises. Examples of such needs may include 1) a greater
amount of a resource may be needed to speed up an activity
2) a higher priority pre-emptive request would require
dynamic change in allocation state of currently allocated
resources. This information may be captured as attributes
of Resource Instances. Hence, on allocation of a resource,
two attributes must be set: (i) AllocatedTo – this holds a
reference to the specific task to which this resource is
allocated (ii) AmountAllocated – the amount of this
resource allocated for the task.

Criteria Assertions
A Resource Class may define a set of criteria assertions. A
criteria assertion is a boolean expression over the attribute
values of the resource. These assertions serve as
membership criteria for all the children (resource classes or
instances) of this class. The additional assertions added at a
child Resource Class may not contradict those of a parent
class. While this is not checkable in general, such

 6

contradictions would make it impossible to populate the
resource class with instances, as no instance would satisfy
all criteria assertions and therefore could not be added to
the model. Therefore, the classes farther from the root,
along a certain path of is-a links, have more membership
criteria to satisfy and thus represent more specific classes
than those closer to the root. As an example, one might
have a FastPrinter class as a child of the more general
Printer class. The FastPrinter class may have with it an
assertion that its capacity be greater than 15 pages per
minute. Each resource class or instance that is a child of
this class should satisfy this criterion. Failure to do so
would indicate that this model does not satisfy the
semantics that were intended. The Resource Manager
checks criteria assertions after any of the following:
changes to the criteria assertions, changes to attribute
values of a resource, or the addition of any resources
connected (transitively) with is-a links.

Resource Model Editing
To allow for easy creation, editing, reorganization, and
visualization of a resource model, we provide a GUI tool,
the Resource Model Editor. We expect a great deal of
dynamic changes to occur to resource entities due to
acquiring and releasing of resources before and after tasks.
Additionally, we expect some resources to be created, or
perhaps destroyed, dynamically during the execution of
some activity. For example, a software engineering process
produces artifacts, such as design documents, implemented
classes, test cases etc. Each of these could be modeled as a
resource. To facilitate this, we provide an API that allows
tools to dynamically edit the model.

4 RESOURCE MANAGEMENT
The information in a resource model may be used to control
resource sharing, plan future usage, or reason about
speeding up activity. In this section, we describe how our
Resource Manager helps support the above. It should be
recalled that activities using resources are defined outside
of the resource manager. The responsibility of the Resource
Manager is to provide information about the types and
availability of resources and to track their usage. Moreover,
the Resource Manager could maintain a history of requests
for resources that failed, and thus evaluate the need for
more resources of a particular type, which as mentioned in
Section 2, is important in speeding up of an overall activity.

Identifying Resources
To identify all resources that meet a particular need, the
client of the resource specifies a resource class name and a
query over the attributes of the class. The Resource
Manager, finds all instances connected transitively via is-a
links from the named resource class and applies the query
to each instance to see if it satisfies the query, and, if so,
adds that instance to the set to be returned.

Acquiring Resources
Acquiring a resource allocates the requested resource to the
requester immediately. The acquisition of resources by a
task is similar to requiring of resources by other resources
as described earlier in Section 3. For example, a design task
requires a design team; hence it tries to acquire one.
Acquisition of a resource for an activity is effected by the
specification of a resource instance or class by name and a
related query. If the Resource Manager can identify a
resource that matches the specification correctly, it is
locked for use by the given activity. If more than one
resource matches, the resource manager selects one. See
Section 7 for more on Resource Selection.

Since acquisition is similar to the Requires association
earlier described, two of the attributes of the Requires
association (AmountRequired, Cardinality) may be
specified in an acquisition specification. Fixed and
Proportional attributes are not applicable here though, as
acquisition originates from an activity and not a resource.
Also, if the acquisition request is for a resource that
requires another resource, the acquisition succeeds only if
all transitively required resources get acquired successfully.

However, the Resource Manager cannot prevent
unauthorized use of resources, when their use is made
outside of the resource manager. For example, a person
may be given an assignment without the resource manager
being informed. While this cannot be prevented, it does
compromise the Resource Manager’s ability to assist in
planning and scheduling.

Reserving Resources
Acquisition results in immediate locking of resources.
Reservation on the other hand supports the ability to plan
for future use of the resource. A reservation request is a
specification of the resource class or instance to reserve, a
query over the resource’s attributes, the time the resource is
needed and for what duration. The reservation is made at
the level as specified in the resource specification.
Therefore if the level requested is a Schedulable Resource
Class, then the reservation is made at the that class’ level;
this way, selection of a particular instance of the
Schedulable Resource Class may be deferred until
acquisition time. This has the potential to increase the
overall utilization of the resources since a later request
might require a specific resource; hence by not reserving a
specific instance at reservation time, it is more likely that a
more specific request is satisfied. If however, the request is
for an instance that is available and satisfies the query, the
instance is reserved till it is used. Reservation may be
exclusive or not, similar to acquisition. If the request is for
a resource that requires other resources, these other
resources are also reserved using rules already stated. This
is necessary since reservation of a resource for use in the
future is successful, not only when it is acquirable, but also
when the resources it requires are acquired successfully.

 7

Releasing of Resources
If a resource is acquired or reserved, it can be made
available again for others to use by releasing it. A resource
is released on the completion of an activity for which it was
acquired or reserved. A resource is also released if the
duration for which it is reserved expires and it is not
acquired for use at this time.

5 OUR EXPERIENCE WITH THIS APPROACH
We have gained experience with our resource manager by
integrating it into Little-JIL, a visual process programming
language. In this section, we describe how the resource
manager meets resource management needs in this
application domain.

In Little-JIL [10], a process is represented as a hierarchical
decomposition of steps. Attached to each step is a list of
resources that are required to carry out that step. Typical
resources in Little-JIL include agents (which may be
human, software, robots, for example), physical resources
(printers, computers, specialized hardware, for example),
licensed software (compilers, design tools, word
processors, for example), and access permissions for data
(documents or portions thereof, for example). In Little-JIL,
each step has an agent. From Little-JIL’s perspective, the
agent is distinguished from the other resources by virtue of
the fact that it is the entity with which the Little-JIL
interpreter communicates to assign tasks and get results.
From the resource manager’s perspective, however, an
agent is simply a resource. Little-JIL assumes that a
resource model describing all available resources is defined
outside of the process. The resource specifications attached
to steps enable the identification, acquisition, and release of
resource instances that meet the needs of the step. This
binding between specific resource instances managed by
our resource manager and specific step instantiations in a
Little-JIL process being executed is done dynamically as
described in Section 4. Assuming the necessary resources
exist in the model, the agent is acquired and Little-JIL
assigns to it the responsibility for executing the step to
which it is bound. The agent might not start executing the
step immediately (minutes or even weeks, depending on the
nature of the process). To avoid blocking the resources for
long periods of time, the Little-JIL interpreter does not
acquire the rest of the resources required for the step until
the agent indicates that it is starting to execute the step. At
this point, if the resources are not available, the resource
manager fails to acquire the resources and Little-JIL throws
an exception that is handled by a handler designed to deal
with exceptions of this sort. Resources may be passed to
substeps when those substeps are ready for execution.
When the step (and all its substeps) have completed, Little-
JIL releases the resources that were acquired for execution
of that step.

The process (see Fig 3) that used the resource model
example shown in Fig 2, was a simple multi-user design

process built on top of the Booch Object Oriented Design
methodology. In this process, a design team is given a
design task. They perform some initial design activities as a
team and then subdivide the assignment into individual
design assignments. The design activity follows the steps of
1) identifying abstractions, 2) identifying the semantics of
the abstractions, 3) identifying the relationships between
abstractions, and 4) implementing the abstractions. Each of
these steps is carried out by a human (or team of humans),
but some substeps are used to check postconditions on
completion of some of these steps, and these substeps may
have software agents. For example, the IsDocumented
substep invoked after IdentifyMajorAbstractions, to check
if some documentation exists for each named abstraction,
has a software agent. The software agent required here is
not licensed software. There is no contention for them, no
need to schedule them, and thus they do not need to be part
of the resource model. A specific resource instance can also
be specified as the agent for a step; however, it is more
usual for a specification to name a resource class. In cases
where specific resource instances are specified, these
resource instances may be introduced into the model to
support the specific process. In such cases, these software
agents are not the types of general reusable, contended-for
resources we normally expect to find in a resource model.
They exist simply because the Little-JIL interpreter
requires that all agents be treated as resources. Hence, we
found that it was sometimes necessary to customize a
resource model to support a specific Little-JIL process. Our
experience was that such customizations turned out to be
simple to do, and did not seem to have any noticeable effect
on the operation of the resource manager.

Whole-Part relationships allowed us to model the design
team as a ‘whole’, which is responsible for an entire
subproject. As a team they meet to decompose the
subproject into major abstractions that can be further
designed in (relative) isolation by individual designers.

NoMoreDesigner

Agent: DesignTeam

Fig 3. A LittleJIL Process with Resource Declarations

DesignSubProject

g 1�;�

 1�;�

IdentifyMajorAbstractions DesignInParallel

 = 1�;�

DesignByIndividual

DesignInParallel

¥

Agent: Designer, team =
DTeam1

DTeam1<-Agent

 8

This is represented in the process by specifying a
DesignTeam to be the agent for the DesignSubProject step.
At this point the resource manager is asked to acquire all
team members, of the assigned team, say DTeam1 (see Fig
2) for the design activity. Once this has been done, the
entire team is inherited as the agent for the
IdentifyMajorAbstractions step. Once this resource has
been identified, the DesignInParallel step is recursively
invoked. The first substep of DesignInParallel, the
DesignByIndividual step, is invoked, and this step requires
as an agent a Designer who is a member of the DTeam1.
Here, either B or C are allocated. The purpose of this step is
to give an individual assignment to an individual member
of the team and so their assignments are simply refined to
the more specialized tasks at hand.

The motivation behind separating a resource model from
the process is to allow a single process to be reused
effectively across a range of resource availability scenarios
(reusable processes). The process specifies the essential
resource requirements using specifications, while the
specific instances are bound dynamically based upon what
is available in the environment. In addition to supporting
substitutable resources, this also allows us to specify a
process in which activities can be performed in parallel if
sufficient resources exist but need to be done sequentially if
there are insufficient resources. This has led to a common
Little-JIL idiom of resource-bounded parallelism as
exemplified by the DesignInParallel step where multiple
instantiations of a step to be performed in parallel are
allowed, with each step getting new resources. When all the
available resources have been allocated, a newly
instantiated step’s request for resources will be denied, an
exception will be thrown, and no more parallel
instantiations will be created. We have also found
resource-bounded recursion to be a useful idiom, although
it does not occur in this example.

The agents can communicate directly with the resource
manager when required. For example, an agent might be in
the best position to select which specific resources to
acquire, or might want to release resources in some substep
rather than waiting for the entire step to complete. This is
particularly true for the management of human resources,
where one would almost certainly want a human manager
to make such decisions as which people should perform
which specific assignments. The entire functionality of the
resource manager is thus available to agents to refine the
use of resources within a process. The ClassReserver agent
is an example of using the resource manager’s functionality
to create a process specific acquisition procedure. The
ClassReserver agent is a GUI tool that enables the human
designer to select which classes the designer wants to work
on, acquiring those classes for the designer and thereby
preventing other designers from working on the same
classes simultaneously. Other processes might provide
other mechanisms for doing this binding, such as having a

human manager specify all class-designer assignments.

6 RELATED WORK
Other resource modeling and specification work has been
done in such resource sensitive application areas as
software process, operating systems, artificial intelligence
planning and management. The approaches in these areas
have some similarities to our own work, as they concern
themselves with such similar problems as the coordination
of activities that can span long time periods.

Related work in Software Process
A number of software process modeling and programming
languages and systems have addressed the need to model
and manage resources. Among the most ambitious and
comprehensive have been APEL [9], and MVP-L [14], both
of which have attempted to incorporate general resource
models and to use resource managers to facilitate process
execution. APEL’s approach is similar to ours in that APEL
deals with resource management as a separate issue that is
orthogonal to other process issues. APEL provides a way
to specify an organizational model that includes human
resources and their aggregates (teams). It also introduces
the notion of a position that is very similar to our notion of
a resource class, in that it tags human resources according
to their skill sets. APEL’s roles define the capacity in which
a resource is used by a specific activity. APEL’s resource
modeling approach, however, seems to be less general and
comprehensive than our model of resources. In addition it
does not seem to incorporate any provision for support of
scheduling.

There are a number of other process languages that provide
for the explicit modeling of different sorts of resources.
MERLIN [5], for example, provides rules for associating
tools and roles (or specific users) with a work context
(which may be likened to a Little-JIL step). Some others
that offer similar limited capabilities are ALF [4],
STATEMATE [8], and ProcessWeaver [1].

In all of these cases, however, the sorts of resources that are
modeled are rather limited in scope.

Related work in Operating Systems
The problem of scheduling resources has been extensively
studied in the field of operating systems. The most common
resources in this problem domain include peripheral
devices and parts of code or data that require exclusive
access. The differences between the needs of resource
management in operating systems and software engineering
(or artificial intelligence) arise from the the following facts
about operating system resources: (i) Resources are used
for much shorter periods of time (hence more elaborate
notions of availability are not usually needed). (ii)
Resources are generally far less varied (e.g., humans are
not considered resources in this domain). (iii) Resource
usage is much less predictable. Independent programs

 9

compete for the same resources and are executed at
unpredictable times.

Operating systems research on resource management per
se, usually focuses on scheduling techniques of a specific
resource (such as a CPU or a hard disk as in [6] and [16]).
The similarities in purposes of resource modeling between
software engineering and operating systems fields, appear
only in research on admissions control ([3], [2], [15], [12])
in networking and both of these fields require a resource
environment abstraction that can model several kinds of
resources. They also require a way to satisfy a general
resource request (as opposed to the request for a specific
instance). This means that a search mechanism is needed in
both cases. The resource modeling approaches in the field
of networks research are somewhat similar to our approach
in that they also often introduce a hierarchy of resources
and provide some functionality (i.e., operations for search,
reservation and acquisition of resources). It is interesting to
note that the authors of [3] and [2] also saw the need to
make the resource model independent from the model
representing tasks (applications in their terminology).
Resource models in this domain, however, seem to lack
flexibility and generality.

Related work in AI Planning Systems
Probably, the closest resource modeling approach to ours is
suggested in the DITOPS/OZONE system. OZONE is a
toolkit for configuring constraint-based scheduling systems
[17]. DITOPS is an advanced tool for generation, analysis
and revision of crisis-action schedules that was developed
using the OZONE ontology. The closeness is evidenced by
the fact that OZONE also incorporates a definition of a
resource, contains an extensive predefined set of resource
attributes, uses resource hierarchies, offers similar
operations on resources, and also resource aggregate
querying. We believe that our resource modeling approach
places a greater emphasis on human resources in the
predefined attributes and allows for an implementation that
is easier to adapt to different environments.

The Cypress integrated planning environment is another
example of a resource-aware AI planning system. It
integrates several separately developed systems (including
a proactive planning system (SIPE-2 [18]) and a reactive
plan execution system). The ACT formalism [11] used for
proactive control specification in the Cypress system, has a
construct for resource requirements specification. It allows
the specification of only a particular resource instance. The
resource model does not allow for resource hierarchies and
the set of predefined resource attributes is rigid and biased
towards the problem domain (transportation tasks).

Related work in Management
An example of a resource modeling approach in a
management system is presented in the Toronto Virtual
Enterprise (TOVE) project [7]. This approach suggests a
set of predefined resource properties, a taxonomy based on

the properties and a set of predicates that relate the state
with the resource required by the activity. The predicates
have a rough correspondence to some methods of our
resource manager. It is very likely that our resource
manager would satisfy the functionality requirements for a
resource management system necessitated by the activity
ontology suggested in the TOVE project.

Related work in other distributed software systems
The Jini distributed software system, developed by Sun
Microsystems, seems to employ a resource modeling
approach that seems somewhat similar to ours. The Jini
system is a distributed system based on the idea of
federating groups of users and the resources required by
those users. The overall goal of the system is to turn a
network into a flexible, easily administered tool on which
human and computational clients can find resources. One
of the end goals of the Jini system is to provide users easy
access to resources. Jini boasts the capability for modeling
humans as resources, allows for resource hierarchies, and
provides ways to query a resource repository using a
resource template that is very similar to resource queries in
our suggested approach.

7 EVALUATION AND FUTURE WORK
In an earlier paper [13], we describe some experience we
have had in applying an earlier version of this resource
management system. Most of this experience has come
from integrating this system with the Little-JIL process
modeling system [10]. We have used this system to model
processes for robot coordination, negotiations, information
warfare scenarios, data mining and software engineering
processes such as collaborative design and regression
testing. This experience has confirmed that the features
described in this paper are of substantial value.

Future work includes addition of a tracking mechanism into
the Resource Manager that would help draw inferences
about projected resource needs and utilization. A
mechanism of this sort would enable users to gauge the
gains and losses that would be likely to result from making
changes in resource availability, or from making changes to
the activity itself.

Also, our resource querying mechanism needs to be able to
find “best-match” resources, based on user-specified
queries. Despite having this, it is expected that on several
occasions, multiple instances in the model may satisfy the
query. At this point, we need some kind of mechanism to
either pick one of many instances or help decide which the
best instance is. This has prompted us to think of
developing and embedding in the resource manager,
various resource selection processes. These processes may
vary from simple “pick-any-one” processes to more
complex negotiation processes, depending on what exactly
is required by the activity.

 10

Finally we need to gain more experience in the use of the
resource manager to support planning and coordination
systems. To this effect, we are continually developing
processes to evaluate how well the resource management
system meets the needs of activity coordination.

ACKNOWLEDGEMENTS
This research was partially supported by the Air Force
Research Laboratory (AFRL)/IFTD and the Defense
Advanced Research Project Agency (DARPA) under
contract F30602-97-2-0032. The views and conclusions
contained herein are those of the authors and do not
represent the official policies or endorsements either
expressed or implied, of DARPA, AFRL/IFTD, or the US
Government.

REFERENCES
1. C. Fernstrom. Process Weaver: Adding Process Support

to UNIX. The Second Intl. Conf. on the Software
Process, pages 12-26, 1993.

2. S. Chatterjee and J. Strosnider. A Generalized
Admissions Control Strategy for Heterogeneous,
Distributed Multimedia Systems. Proc. of ACM
Multimedia, San Francisco, CA, 1995.

3. S. Chatterjee, J. Sydir, B. Sabata, and T Larence.
Modeling Applications for Adaptive QoS-based
Resource Management. Proc. of the 2nd IEEE High
Assurance System Engg. Workshop, Bethesda,
Maryland, 1997.

4. G. Canals, N. Boudjlida, J.C. Derniame, C. Godart, and
J. Lonchamp. ALF: A framework for building process-
centered software engineering environments. Software
Process Modeling and Technology, pages 153-185.
Research Studies Press, Ltd., Taunton, Somerset,
England, 1994.

5. G. Junkermann, B. Peuschel, W. Schafer and S. Wolf.
MERLIN: Supporting cooperation in software
development through a knowledge-based environment.
Software Process and Technology, pages 103-129,
Research Studies Press, Ltd., Taunton, Somerset,
England, 1994.

6. P. Goyal, X. Guo, and H. Vin. A Hierarchical CPU
Scheduler for Multimedia Operating Systems. Proc. of
the 2nd Symp. on Operating Systems Design and
Implementation, pages 107-122, Seattle, Washington,
1996.

7. M. Gruninger and M.S. Fox. An Activity Ontology for
Enterprise Modeling. Submitted to AAAI-94, Dept of
Industrial Engg., Univ. of Toronto, 1994.

8. D. Harel, H. Lachover, A. Namaad, A. Pnuelli, M.
Politi, R. Sherman, A. Shtull-Trauring, and M.
Trakhtenbrot. STATEMATE: A working environment

for the development of complex reactive systems. IEEE
Trans. on Software Engg., 16(4):403-414, 1990.

9. J. Estublier, S. Dami, and A. Amiour. APEL: A
graphical yet executable formalism for process
modeling. Automated Software Engg., 1997.

10. B.S. Lerner, L.J. Osterweil, S.M. Sutton Jr., and
A.Wise. Programming process co-ordination in Little-
JIL. Proc. of the 6th European Workshop on Software
Process Technology, Number 1487 in Lecture Notes in
Computer Science, pages 127-131, Weybridge, UK,
1998.

11. K.L.Meyers and D.E. Wilkins. The ACT Formalism.
Working Document:Ver2.2, SRI, Artifical Intelligence
Center. 1997. http://www.ai.sri.com/act/act-spec.ps

12. K. Nahrstedt and R. Steinmetz. Resource Management
in Networked Multimedia Systems. IEEE Computer,
pages 52-64, 1995.

13. R.M. Podorzhny, B.S. Lerner, L.J.Osterweil. Modeling
Resources for Activity Coordination and Scheduling.
Proc. of the 3rd Internal Conf. on Coordination Models
and Languages. Springer-Verlag, 1999.

14. H. Rombach and M. Verlage. How to assess a software
process modeling formalism from a project member’s
point of view. 2nd Intl. Conf. on the Software Process,
pages 147-159, 1993.

15. S. Floyd and V. Jacobson. Link Sharing and Resource
Management Models for Packet Networks. IEEE Trans.
on Networking. 3(4):365-386, 1995.

16. P. Shenoy and H. Vin. CELLO: A Disk Scheduling
Framework for Next-Generation Operating Systems.
Proc. of ACM SIGMETRICS, 1998.

17. S.F. Smith and M.A.Becker. An Ontology fo
constructing Scheduling Systems. Workig Notes from
AAAI Spring Symosium on Ontological Engg., Stanford,
CA, 1997.

18. D.E.Wilkins. Using the SIPE-2 Planning System: A
Manual for Ver4.17. SRI Artificial Intelligence Center,
Menlo Park, CA, 1997.

