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ABSTRACT 
Specifications of workflow, process, and activity 
coordination systems focus on the assignment of work to 
human and software agents and the dataflow required to 
support those activities.  The runtime behaviors of these 
systems vary widely depending upon the availability of 
agents and other needed resources. Thus the precise 
specification of resources needed by, and available to, a 
system is an important basis for reasoning about and 
optimizing system behavior. Previous resource models used 
in management and workflow have lacked the rigor to 
support powerful reasoning and optimization. Some 
resource models for operating systems have been quite 
rigorous, but overly narrow in scope. This paper presents a 
meta-model for creating precise models of such resource 
types as humans, tools, computation platforms, and data, 
and the various associations between these types that are 
needed to support intelligent allocation of these resources. 
We also present examples of the use of this meta-model. 
This paper also describes a prototype resource allocation 
and management system that implements these approaches. 
This prototype is designed to be a separable, orthogonal 
component of a system for execution of processes defined 
as hierarchies of steps, each of which incorporates a 
specification of resource requirements. 
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1 INTRODUCTION 
Much research in such areas as software process, workflow, 
CSCW and multi-agent systems focuses on devising 
mechanisms for specifying coordination of diverse 
activities to accomplish complex tasks. Most approaches in 
these domains represent the overall task to be accomplished 
as a synthesis of lower-level tasks. In addition, different 
approaches incorporate, to differing degrees of formality, 
the specification of the artifacts that these various tasks use 

and produce. Some also have mechanisms to specify the 
agents and resources to be used to support task execution. 

The differences in emphasis on these different components 
of activity coordination specification are often clearly due 
to differences in goals. Some specifications are often 
intended to be largely illustrative and advisory, being 
intended for use in helping humans come to common 
understandings. But many specifications are intended to be 
sufficiently rigorous that they can be used as prescriptions 
for computer support of resource allocation and scheduling 
through the application of tools. 

Our past work has this latter goal. We have concentrated on 
developing and evaluating resource specification 
formalisms that are sufficiently rigorous that they can be 
used to reason about such complex activities as the 
processes used to develop large software systems and how 
to support these processes most efficiently. This has 
demonstrated the need for structuring the tasks that 
comprise the larger overall processes and the need for 
being articulate and complete in specifying the artifacts that 
these tasks use and produce.  

Operating systems research long ago demonstrated the need 
for reasoning about resources in parallelizing, coordinating 
and optimizing the execution of system processes. Clearly, 
the abundance of resources can enable execution of tasks in 
parallel, thereby speeding up accomplishment of larger 
goals. This same phenomenon is also clearly observable in 
broader classes of activity coordination. If a software 
design activity requires the use of a specific design tool, 
then the various members of a design team can work in 
parallel only if multiple licenses of the tool are available. 
Similarly, if the activity is decomposed into several parallel 
design subtasks, the design process may proceed faster, but 
only if more than one qualified designer is available to 
work on the project. 
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The lack of resources causes contention, occasions the need 
for some tasks to wait for others to complete, and generally 
slows down accomplishment of larger goals. Often 
potential delays can be avoided or reduced by using 
resource analysis to identify ways in which tasks can be 
made to execute in parallel that avoid resource contention. 

Problems in operating systems like deadlocks and livelocks 
are very real for the larger class of activity coordination 
problems as well. It is not hard to devise a process in which 
a requirements analyst awaits the results of a prototype 
activity in order to complete requirements specification, 
while a prototyper awaits the completion of the 
requirements specification to complete the prototype. 

In addition to the scheduling concerns outlined above, 
reasoning about resources requires an understanding of the 
similarities and differences among resources as well as the 
precise needs of the activities being coordinated.  With this 
understanding it is possible to identify in which situations 
only a particular resource will suffice and in which 
situations any of a class of resources may be acceptable for 
the task.  This identification of critical resource needs can 
also facilitate the identification of likely bottlenecks in the 
execution of a process or workflow. 

Having the ability to describe resource classes and their 
membership also facilitates improvements in the execution 
of coordinated activities without requiring change to the 
activity specification itself.  For example, by adding a 
second resource compatible with some critical resource, the 
throughput of the coordinated activity should improve.  A 
superior resource may also result in qualitative 
improvements to the output of the activity, again without 
changing the activity specification itself. 

In our process work, we would like to create processes that 
use a wide variety of resources. In addition, we would like 
to be able to treat a group of resources, say a team of 
humans, as a single allocatable unit and support effective 
resource sharing among tasks through fractional allocation 
policies. We would like to be able to identify where 
deadlocks, race conditions and starvation are possible, so 
that we can assure that they do not occur. We would also 
like to be able to infer when additional resources can speed 
up execution of the overall activity, and when there are 
extra resources that may be reassigned. We would like to 
be able to manage contention for popular resources and 
those that require mutual exclusion. 

The preceding sorts of reasoning and control seem to us to 
be impractical unless the resources needed by tasks are 
specified. As with most software analyses, these sorts of 
reasoning can be more powerful and precise when the rigor 
with which needed resources are specified is more powerful 
and precise. Thus in this work, we propose a powerful and 
precise resource specification formalism to provide a basis 
for the kinds of analyses indicated above. 

2 MOTIVATION 
As an example to motivate our work, we show how 
management of resources specified by our modeling 
formalism can improve the effectiveness of a small 
software development team. Consider a team whose 
members have a variety of skills. Besides the people,  other 
resources include licenses for tools like Rational Rose and 
Visual C++. Assume that the team is currently in the later 
stages of development of a product, and is both completing 
implementation and also carrying out some redesign that is 
required in order to fix bugs that have been detected in 
earlier work. The progress of the team may be hampered 
due to lack of resources. In particular there are probably 
times when having more qualified designers or coders 
would help. More likely it could be that the progress of the 
team could be expedited if the team had available an 
additional Rose or VC++ license.  

A reasonable scenario here might be that the organization 
has money to purchase only one additional license, and it 
would be important to decide in some way, the best choice, 
a Rose license or a VC++ license. Our resource 
specification capability is intended to be a facility for 
supporting informed decisions of precisely this sort. It 
might be used as the basis of schedule reduction achievable 
through one purchase or the other. It might be used to study 
increases in human resource utilization, or it might be used 
to suggest ways in which the process using this model itself 
might be altered to reduce the schedule without having to 
purchase new licenses at all. Of course, a small example 
like this can easily be analyzed without automated tools. As 
the number of resources increases, the complexity of their 
interactions, and the complexity of processes being 
supported increases, these analyses become more difficult 
to do without automated support. 

We now introduce our resource modeling and management 
approach and indicate why it seems to us to be effective in 
dealing with problems such as these. 

3 RESOURCE MODEL ABSTRACTIONS 
 

 

 

 

 

 

Our resource manager is a component of a larger system 
that is used to program and execute processes [10], support 
reasoning about real-time systems, or be integrated into a 
planning system, for example. Since we believe that this 
model may be used to specify resources in any domain, we 
have designed the meta-model to support a wide range of 
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Fig 1: Abstract representation of our Resource Model 
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resource types, which may be physical entities like robots, 
electronic entities like programs or data, people etc.  

In Fig 1 above, we depict a representation of our resource 
meta-model. The boxes indicate the various types of 
resources we support. The thin solid edges are is-a links 
connecting a resource class with a more specific resource 
class. The thick solid edges indicate type-instance 
relationships between schedulable resource classes and 
instances. The dashed edge is a whole-part relation, 
discussed later in this section. The ball at the end of an 
edge denotes cardinality greater than 1. 

The elements of this meta-model are used to create 
resource models that represent those entities of an 
environment that may be required, but for which an 
unlimited supply cannot be assumed. A resource model is 
defined as a collection of Resource Classes (RC) and 
Resource Instances (RI). A Resource Instance represents 
a unique entity in the environment, such as a specific 

person, printer or document. A Resource Class represents a 
set of resources (or classes) that have some common 
properties. Some resource classes may be Schedulable. A 
Schedulable Resource Class (SRC) is one whose 
instances are similar enough that the user of the resource 
model might not care which instance is chosen. For 

 

       

Fig 2. Example of a Static Resource Model       
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example, Printer could be a Schedulable Resource Class. 
Other resource classes are unschedulable (RC) and are 
more abstract. They are intended to be more for an 
organizational convenience when defining resource models. 
Both resource classes and instances may be collected to 
form groups or composite objects. Thus a Composite 
Resource Instance (CRI) is one that forms a group of 
other Resource Instances, composite or otherwise. A 
Composite Schedulable Resource Class (CSRC) can 
have other Composite Schedulable Resource Classes and/or 
Composite Resource Instances. An example of a Composite 
Resource Instance is a specific team of humans or a cluster 
of printers whereas an example of a Composite Schedulable 
Resource Class would be a DesignTeam class, say, that had 
several teams of designers as instances. Therefore, any 
resource allocation method applicable to design teams in 
general may be applied to such a class.  

Resource Attributes 
We represent each resource as a set of typed attribute-value 
pairs. There is a small set of predefined attributes. The 
predefined attributes required of all resources are: a Name, 
a Textual Description of the resource and a set of Criteria 
Assertions. (Criteria assertions are described later in this 
section.) 

Schedulable Resource Classes have Unit attributes. The 
unit of a resource is a label that describes how the resource 
is measured. For example, an electrical circuit might be 
measured in amps, or a person’s time might be measured in 
number of hours per day. All elements further down the 
hierarchy of a class assume identical unit attributes. 
Resource Instances have Capacity and Availability 
attributes. The Capacity of an instance indicates the 
maximum acquirable quantity of the instance. Availability 
attributes track use of resources indicating the quantity of a 
resource that is available for use. Also needed are 
AllocatedTo and AmountAllocated attributes, described 
later in this section. 

In addition, the resource modeler can associate user-defined 
attributes that are unique to the specific resource being 
modeled. The attribute values of a resource serve to identify 
the resource and distinguish it from other similar resources. 
For example, a Printer may have an attribute indicating 
whether it is a color printer or not.  

Resource Associations 
The resource modeling mechanism supports the definition 
of three types of associations among the types elaborated 
above: is-a associations, whole-part associations and 
requires associations.  

is-a hierarchy 

The relationship between a resource class and its members 
is expressed with an is-a link. The resource classes and 
their is-a links form a singly rooted tree. The root of the 
tree is a predefined Resource Class called Resource. A 

Resource Instance may belong to many resource classes; 
hence the entire model forms a singly rooted DAG. Each 
child of an is-a link inherits all attributes of its parents. If 
the same attribute name appears in multiple parents and is 
originally defined in separate classes (i.e., not in a common 
ancestor), the instance contains all attributes, qualified by 
class name. So for example, if Becky is an instance that 
belongs to both the Programmer and the Translator classes, 
and both have Language attributes, then she could have 
C++ and Java as attribute values for the 
Programmer.Language attribute and English and French 
for her Translator.Language attribute. An example of an is-
a hierarchy is shown in Fig. 2a. 

Whole-Part Associations 

The semantics of a Whole-Part association is that a 
resource is physically or logically part of a composite 
resource. Both the composite and the part are schedulable 
resources (instances) so that resources may be used as a 
whole, or parts of it may be used individually. An example 
of a whole-part association is that a team is a composite 
whose parts are the team members (see more examples in 
Fig. 2b). Any assignment to a team is therefore a joint 
assignment to the team members.  

Whole-Part associations have a Contribution attribute that 
defines how much of the part’s capacity is devoted to the 
composite. The capacity of a Composite Resource Instance 
is the sum of the contributions of each constituting 
Resource Instance. Therefore, the capacity of a Composite 
Resource Instance changes dynamically as Resource 
Instances join or leave the group. An instance can be a part 
of multiple composites as long as it does not over-commit 
its own capacity. For example, a programmer may work for 
more than one team. 

To elucidate, let CRI represent a team, and each RIi 
represent constituting team members. Let Xi be the capacity 
of each RIi, X be the capacity of the CRI and xi be 
contributions of each RIi to the CRI, where 0 <= xi <= Xi. 
For i=1 to n, if xi were not indicated, xi = Xi, by default. 
Therefore, the range of values that the capacity of CRI can 
assume may be expressed as �� � � ;� � � � ;i and in 
general, Capacity(CRI) = � [i. Note that since a given RI 
may be a part of more than one CRI say CRI1 … CRIm, 
then all the allocations may be satisfied at a time, only if, 
for j=1 to m, �Contribution(RI, CRIj) <= Capacity(RI).  

Requires Associations 

Functional dependencies between resources are captured 
with a Requires association. This indicates that in order for 
one resource to be useful, it needs another. For example, a 
piece of software requires a computer that is configured to 
run it. The semantics of the Requires relationship differs 
depending on the type of the destination node of the edge. 
In general, if a Requires edge falls on an instance, it 
implies that a specific instance is required by another 
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resource. However, if a Requires edge falls on a 
Schedulable Resource Class, it implies that any one of the 
instances of that class is required. 

There are five attributes we may associate with Requires 
edges. The first is the AmountRequired attribute. This 
attribute is specified when exclusive use of an instance is 
not required, i.e., only a fraction of the resource’s capacity 
is required. This allows for fractional allocation of 
resources and enables resource sharing. This is necessary to 
support parallel tasks that need to share resources. The 
second is the Cardinality attribute. This attribute may be 
specified on Requires edges that fall on Schedulable 
Resource Classes only. Other attributes are described later 
in this section. 

If a Requires edge originated from a resource class, all 
instances of the class would automatically inherit this 
requirement. The third attribute, the Name, is used to allow 
overriding instead of inheritance. Instances can override an 
inherited edge by specifying their own edge with the same 
name. If however, a new Requires edge, with a name 
different from the one that exists at its parent’s level, is 
added, the requirement for this instance, would be 
considered additive, to what is required at the class level. 

Now we elaborate the semantics of the attributes just 
mentioned. Let the AmountRequired attribute be Y units on 
an edge falling on a Resource Instance, where Y <= 
Capacity(Resource Instance). If this attribute is not 
specified, the resource manager, by default, allocates the 
instance, in its entirety. In the case of a composite resource 
instance, if Y < Capacity(CRI), then (Y/Capacity(CRI) * 
100%) of each constituent Resource Instance’s contribution 
to its composite would get allocated.  That is, the 
contribution of each part to the composite would be 
reduced proportionally. 

For more concrete examples of this usage of the Requires 
edge, refer to the resource model example in Fig 2. Let the 
Unit attribute of the Printer class be pages/day. Let P1 and 
P2 have Capacities of 200 and 500 units respectively. If A 
is a Manager who requires a dedicated printer, P1, there 
would exist a Requires edge from A to P1. If F is a 
documenter who needs no more than 50 units of P2, this 
may be represented as a Requires edge from F to P2, with 
AmountRequired set to 50. 

For Requires edges falling on Schedulable Resource 
Classes, if only the Cardinality attribute is specified to be 
m on the edge, this implies the requirement of m instances 
of a Schedulable Resource Class. If this attribute is not 
specified, the resource manager, by default, allocates one 
instance in its entirety. If both the AmountRequired and 
Cardinality attributes are specified on this edge to be Y 
units and m, this implies the requirement of Y units each of 
m instances of the class. 

We now present more concrete cases where Requires edges 
may fall on Schedulable Resource Classes. In Fig. 2, if 
DocumentationTeam1 requires 150 pages/day of printing 
capacity of one Printer instance and the team is not 
bothered which particular printer instance, P1 or P2, is 
acquired for the purpose, then a Requires edge from 
DocTeam1 to Printer, with AmountRequired set to 150 
units serves the purpose. The second example is that of 
CodingTeam2 requiring 2 licenses of a CodingTool. So let 
the Unit attribute of Coding Tool be the number of licenses 
and given that VC++ is the only coding tool available, this 
would be satisfied by a Requires edge from CTeam2 to 
CodingTool with Cardinality attribute set to 2. If its 
availability is 2 or more licenses, 2 copies get allocated. 

Two other attributes may be defined on Requires edges: 
Fixed and Proportional. These attributes take boolean 
values. By default, Fixed is not set and Proportional is set. 
Fixed allocation indicates that the capacity required is 
constant, whereas proportional allocation indicates that the 
amount required is proportional to that required of the 
requirer, dedicated to the activity.  The following examples 
describe this further. 

Let R1, R2, R3 be three resource elements (classes or 
instances). Let R1 require 10 units of R2 with the 
PROPORTIONAL attribute set, and R2 require 5 units of 
R3, with FIXED attribute set.  If Capacity(R1) = 20 units, 
and only 10 units of R1 are required, then only 5 units of 
R2 is allocated; and irrespective of what amount of R2 is 
allocated, a fixed amount of 5 units of R3 is always 
allocated. 

Resource Allocation State 

Once a resource is allocated, it is necessary to maintain to 
which specific task or entity it has been allocated to and by 
what amounts. The maintenance of such information allows 
easy manipulation of allocated amounts when the need 
arises. Examples of such needs may include 1) a greater 
amount of a resource may be needed to speed up an activity 
2) a higher priority pre-emptive request would require 
dynamic change in allocation state of currently allocated 
resources. This information may be captured as attributes 
of Resource Instances. Hence, on allocation of a resource, 
two attributes must be set: (i) AllocatedTo – this holds a 
reference to the specific task to which this resource is 
allocated (ii) AmountAllocated – the amount of this 
resource allocated for the task. 

Criteria Assertions 
A Resource Class may define a set of criteria assertions. A 
criteria assertion is a boolean expression over the attribute 
values of the resource. These assertions serve as 
membership criteria for all the children (resource classes or 
instances) of this class. The additional assertions added at a 
child Resource Class may not contradict those of a parent 
class. While this is not checkable in general, such 
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contradictions would make it impossible to populate the 
resource class with instances, as no instance would satisfy 
all criteria assertions and therefore could not be added to 
the model. Therefore, the classes farther from the root, 
along a certain path of is-a links, have more membership 
criteria to satisfy and thus represent more specific classes 
than those closer to the root. As an example, one might 
have a FastPrinter class as a child of the more general 
Printer class. The FastPrinter class may have with it an 
assertion that its capacity be greater than 15 pages per 
minute. Each resource class or instance that is a child of 
this class should satisfy this criterion. Failure to do so 
would indicate that this model does not satisfy the 
semantics that were intended. The Resource Manager 
checks criteria assertions after any of the following: 
changes to the criteria assertions, changes to attribute 
values of a resource, or the addition of any resources 
connected (transitively) with is-a links. 

Resource Model Editing 
To allow for easy creation, editing, reorganization, and 
visualization of a resource model, we provide a GUI tool, 
the Resource Model Editor. We expect a great deal of 
dynamic changes to occur to resource entities due to 
acquiring and releasing of resources before and after tasks. 
Additionally, we expect some resources to be created, or 
perhaps destroyed, dynamically during the execution of 
some activity. For example, a software engineering process 
produces artifacts, such as design documents, implemented 
classes, test cases etc. Each of these could be modeled as a 
resource. To facilitate this, we provide an API that allows 
tools to dynamically edit the model. 

4 RESOURCE MANAGEMENT 
The information in a resource model may be used to control 
resource sharing, plan future usage, or reason about 
speeding up activity. In this section, we describe how our 
Resource Manager helps support the above. It should be 
recalled that activities using resources are defined outside 
of the resource manager. The responsibility of the Resource 
Manager is to provide information about the types and 
availability of resources and to track their usage. Moreover, 
the Resource Manager could maintain a history of requests 
for resources that failed, and thus evaluate the need for 
more resources of a particular type, which as mentioned in 
Section 2, is important in speeding up of an overall activity. 

Identifying Resources 
To identify all resources that meet a particular need, the 
client of the resource specifies a resource class name and a 
query over the attributes of the class. The Resource 
Manager, finds all instances connected transitively via is-a 
links from the named resource class and applies the query 
to each instance to see if it satisfies the query, and, if so, 
adds that instance to the set to be returned. 

Acquiring Resources 
Acquiring a resource allocates the requested resource to the 
requester immediately.  The acquisition of resources by a 
task is similar to requiring of resources by other resources 
as described earlier in Section 3. For example, a design task 
requires a design team; hence it tries to acquire one. 
Acquisition of a resource for an activity is effected by the 
specification of a resource instance or class by name and a 
related query. If the Resource Manager can identify a 
resource that matches the specification correctly, it is 
locked for use by the given activity. If more than one 
resource matches, the resource manager selects one. See 
Section 7 for more on Resource Selection. 

Since acquisition is similar to the Requires association 
earlier described, two of the attributes of the Requires 
association (AmountRequired, Cardinality) may be 
specified in an acquisition specification. Fixed and 
Proportional attributes are not applicable here though, as 
acquisition originates from an activity and not a resource. 
Also, if the acquisition request is for a resource that 
requires another resource, the acquisition succeeds only if 
all transitively required resources get acquired successfully. 

However, the Resource Manager cannot prevent 
unauthorized use of resources, when their use is made 
outside of the resource manager. For example, a person 
may be given an assignment without the resource manager 
being informed. While this cannot be prevented, it does 
compromise the Resource Manager’s ability to assist in 
planning and scheduling. 

Reserving Resources 
Acquisition results in immediate locking of resources. 
Reservation on the other hand supports the ability to plan 
for future use of the resource. A reservation request is a 
specification of the resource class or instance to reserve, a 
query over the resource’s attributes, the time the resource is 
needed and for what duration. The reservation is made at 
the level as specified in the resource specification. 
Therefore if the level requested is a Schedulable Resource 
Class, then the reservation is made at the that class’ level; 
this way, selection of a particular instance of the 
Schedulable Resource Class may be deferred until 
acquisition time. This has the potential to increase the 
overall utilization of the resources since a later request 
might require a specific resource; hence by not reserving a 
specific instance at reservation time, it is more likely that a 
more specific request is satisfied. If however, the request is 
for an instance that is available and satisfies the query, the 
instance is reserved till it is used.  Reservation may be 
exclusive or not, similar to acquisition. If the request is for 
a resource that requires other resources, these other 
resources are also reserved using rules already stated. This 
is necessary since reservation of a resource for use in the 
future is successful, not only when it is acquirable, but also 
when the resources it requires are acquired successfully. 
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Releasing of Resources 
If a resource is acquired or reserved, it can be made 
available again for others to use by releasing it. A resource 
is released on the completion of an activity for which it was 
acquired or reserved. A resource is also released if the 
duration for which it is reserved expires and it is not 
acquired for use at this time. 

5 OUR EXPERIENCE WITH THIS APPROACH 
We have gained experience with our resource manager by 
integrating it into Little-JIL, a visual process programming 
language. In this section, we describe how the resource 
manager meets resource management needs in this 
application domain. 

In Little-JIL [10], a process is represented as a hierarchical 
decomposition of steps.  Attached to each step is a list of 
resources that are required to carry out that step.  Typical 
resources in Little-JIL include agents (which may be 
human, software, robots, for example), physical resources 
(printers, computers, specialized hardware, for example), 
licensed software (compilers, design tools, word 
processors, for example), and access permissions for data 
(documents or portions thereof, for example). In Little-JIL, 
each step has an agent.  From Little-JIL’s perspective, the 
agent is distinguished from the other resources by virtue of 
the fact that it is the entity with which the Little-JIL 
interpreter communicates to assign tasks and get results.  
From the resource manager’s perspective, however, an 
agent is simply a resource. Little-JIL assumes that a 
resource model describing all available resources is defined 
outside of the process.  The resource specifications attached 
to steps enable the identification, acquisition, and release of 
resource instances that meet the needs of the step. This 
binding between specific resource instances managed by 
our resource manager and specific step instantiations in a 
Little-JIL process being executed is done dynamically as 
described in Section 4. Assuming the necessary resources 
exist in the model, the agent is acquired and Little-JIL 
assigns to it the responsibility for executing the step to 
which it is bound. The agent might not start executing the 
step immediately (minutes or even weeks, depending on the 
nature of the process).  To avoid blocking the resources for 
long periods of time, the Little-JIL interpreter does not 
acquire the rest of the resources required for the step until 
the agent indicates that it is starting to execute the step.  At 
this point, if the resources are not available, the resource 
manager fails to acquire the resources and Little-JIL throws 
an exception that is handled by a handler designed to deal 
with exceptions of this sort. Resources may be passed to 
substeps when those substeps are ready for execution.  
When the step (and all its substeps) have completed, Little-
JIL releases the resources that were acquired for execution 
of that step.  

The process (see Fig 3) that used the resource model 
example shown in Fig 2, was a simple multi-user design 

process built on top of the Booch Object Oriented Design 
methodology. In this process, a design team is given a 
design task. They perform some initial design activities as a 
team and then subdivide the assignment into individual 
design assignments. The design activity follows the steps of 
1) identifying abstractions, 2) identifying the semantics of 
the abstractions, 3) identifying the relationships between 
abstractions, and 4) implementing the abstractions.  Each of 
these steps is carried out by a human (or team of humans), 
but some substeps are used to check postconditions on 
completion of some of these steps, and these substeps may 
have software agents. For example, the IsDocumented 
substep invoked after IdentifyMajorAbstractions, to check 
if some documentation exists for each named abstraction, 
has a software agent. The software agent required here is 
not licensed software. There is no contention for them, no 
need to schedule them, and thus they do not need to be part 
of the resource model. A specific resource instance can also 
be specified as the agent for a step; however, it is more 
usual for a specification to name a resource class. In cases 
where specific resource instances are specified, these 
resource instances may be introduced into the model to 
support the specific process. In such cases, these software 
agents are not the types of general reusable, contended-for 
resources we normally expect to find in a resource model. 
They exist simply because the Little-JIL interpreter 
requires that all agents be treated as resources.  Hence, we 
found that it was sometimes necessary to customize a 
resource model to support a specific Little-JIL process. Our 
experience was that such customizations turned out to be 
simple to do, and did not seem to have any noticeable effect 
on the operation of the resource manager. 

Whole-Part relationships allowed us to model the design 
team as a ‘whole’, which is responsible for an entire 
subproject. As a team they meet to decompose the 
subproject into major abstractions that can be further 
designed in (relative) isolation by individual designers. 
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Fig 3. A LittleJIL Process with Resource Declarations 
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This is represented in the process by specifying a 
DesignTeam to be the agent for the DesignSubProject step. 
At this point the resource manager is asked to acquire all 
team members, of the assigned team, say DTeam1 (see Fig 
2) for the design activity. Once this has been done, the 
entire team is inherited as the agent for the 
IdentifyMajorAbstractions step. Once this resource has 
been identified, the DesignInParallel step is recursively 
invoked. The first substep of DesignInParallel, the 
DesignByIndividual step, is invoked, and this step requires 
as an agent a Designer who is a member of the DTeam1. 
Here, either B or C are allocated. The purpose of this step is 
to give an individual assignment to an individual member 
of the team and so their assignments are simply refined to 
the more specialized tasks at hand. 

The motivation behind separating a resource model from 
the process is to allow a single process to be reused 
effectively across a range of resource availability scenarios 
(reusable processes). The process specifies the essential 
resource requirements using specifications, while the 
specific instances are bound dynamically based upon what 
is available in the environment. In addition to supporting 
substitutable resources, this also allows us to specify a 
process in which activities can be performed in parallel if 
sufficient resources exist but need to be done sequentially if 
there are insufficient resources. This has led to a common 
Little-JIL idiom of resource-bounded parallelism as 
exemplified by the DesignInParallel step where multiple 
instantiations of a step to be performed in parallel are 
allowed, with each step getting new resources. When all the 
available resources have been allocated, a newly 
instantiated step’s request for resources will be denied, an 
exception will be thrown, and no more parallel 
instantiations will be created. We have also found 
resource-bounded recursion to be a useful idiom, although 
it does not occur in this example. 

The agents can communicate directly with the resource 
manager when required. For example, an agent might be in 
the best position to select which specific resources to 
acquire, or might want to release resources in some substep 
rather than waiting for the entire step to complete. This is 
particularly true for the management of human resources, 
where one would almost certainly want a human manager 
to make such decisions as which people should perform 
which specific assignments. The entire functionality of the 
resource manager is thus available to agents to refine the 
use of resources within a process. The ClassReserver agent 
is an example of using the resource manager’s functionality 
to create a process specific acquisition procedure. The 
ClassReserver agent is a GUI tool that enables the human 
designer to select which classes the designer wants to work 
on, acquiring those classes for the designer and thereby 
preventing other designers from working on the same 
classes simultaneously. Other processes might provide 
other mechanisms for doing this binding, such as having a 

human manager specify all class-designer assignments. 

6 RELATED WORK 
Other resource modeling and specification work has been 
done in such resource sensitive application areas as 
software process, operating systems, artificial intelligence 
planning and management.  The approaches in these areas 
have some similarities to our own work, as they concern 
themselves with such similar problems as the coordination 
of activities that can span long time periods. 

Related work in Software Process 
A number of software process modeling and programming 
languages and systems have addressed the need to model 
and manage resources.  Among the most ambitious and 
comprehensive have been APEL [9], and MVP-L [14], both 
of which have attempted to incorporate general resource 
models and to use resource managers to facilitate process 
execution. APEL’s approach is similar to ours in that APEL 
deals with resource management as a separate issue that is 
orthogonal to other process issues.  APEL provides a way 
to specify an organizational model that includes human 
resources and their aggregates (teams). It also introduces 
the notion of a position that is very similar to our notion of 
a resource class, in that it tags human resources according 
to their skill sets. APEL’s roles define the capacity in which 
a resource is used by a specific activity. APEL’s resource 
modeling approach, however, seems to be less general and 
comprehensive than our model of resources.  In addition it 
does not seem to incorporate any provision for support of 
scheduling. 

There are a number of other process languages that provide 
for the explicit modeling of different sorts of resources. 
MERLIN [5], for example, provides rules for associating 
tools and roles (or specific users) with a work context 
(which may be likened to a Little-JIL step).  Some others 
that offer similar limited capabilities are ALF [4], 
STATEMATE [8], and ProcessWeaver [1]. 

In all of these cases, however, the sorts of resources that are 
modeled are rather limited in scope. 

Related work in Operating Systems 
The problem of scheduling resources has been extensively 
studied in the field of operating systems. The most common 
resources in this problem domain include peripheral 
devices and parts of code or data that require exclusive 
access. The differences between the needs of resource 
management in operating systems and software engineering 
(or artificial intelligence) arise from the the following facts 
about operating system resources: (i) Resources are used 
for much shorter periods of time (hence more elaborate 
notions of availability are not usually needed). (ii) 
Resources are generally far less varied (e.g., humans are 
not considered resources in this domain). (iii) Resource 
usage is much less predictable. Independent programs 
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compete for the same resources and are executed at 
unpredictable times. 

Operating systems research on resource management per 
se, usually focuses on scheduling techniques of a specific 
resource (such as a CPU or a hard disk as in [6] and [16]). 
The similarities in purposes of resource modeling between 
software engineering and operating systems fields, appear 
only in research on admissions control ([3], [2], [15], [12]) 
in networking and both of these fields require a resource 
environment abstraction that can model several kinds of 
resources. They also require a way to satisfy a general 
resource request (as opposed to the request for a specific 
instance). This means that a search mechanism is needed in 
both cases. The resource modeling approaches in the field 
of networks research are somewhat similar to our approach 
in that they also often introduce a hierarchy of resources 
and provide some functionality (i.e., operations for search, 
reservation and acquisition of resources). It is interesting to 
note that the authors of  [3] and [2] also saw the need to 
make the resource model independent from the model 
representing tasks (applications in their terminology). 
Resource models in this domain, however, seem to lack 
flexibility and generality. 

Related work in AI Planning Systems 
Probably, the closest resource modeling approach to ours is 
suggested in the DITOPS/OZONE system. OZONE is a 
toolkit for configuring constraint-based scheduling systems 
[17]. DITOPS is an advanced tool for generation, analysis 
and revision of crisis-action schedules that was developed 
using the OZONE ontology. The closeness is evidenced by 
the fact that OZONE also incorporates a definition of a 
resource, contains an extensive predefined set of resource 
attributes, uses resource hierarchies, offers similar 
operations on resources, and also resource aggregate 
querying. We believe that our resource modeling approach 
places a greater emphasis on human resources in the 
predefined attributes and allows for an implementation that 
is easier to adapt to different environments. 

The Cypress integrated planning environment is another 
example of a resource-aware AI planning system. It 
integrates several separately developed systems (including 
a proactive planning system (SIPE-2 [18]) and a reactive 
plan execution system). The ACT formalism [11] used for 
proactive control specification in the Cypress system, has a 
construct for resource requirements specification. It allows 
the specification of only a particular resource instance. The 
resource model does not allow for resource hierarchies and 
the set of predefined resource attributes is rigid and biased 
towards the problem domain (transportation tasks). 

Related work in Management 
An example of a resource modeling approach in a 
management system is presented in the Toronto Virtual 
Enterprise (TOVE) project [7]. This approach suggests a 
set of predefined resource properties, a taxonomy based on 

the properties and a set of predicates that relate the state 
with the resource required by the activity. The predicates 
have a rough correspondence to some methods of our 
resource manager. It is very likely that our resource 
manager would satisfy the functionality requirements for a 
resource management system necessitated by the activity 
ontology suggested in the TOVE project. 

Related work in other distributed software systems 
The Jini distributed software system, developed by Sun 
Microsystems, seems to employ a resource modeling 
approach that seems somewhat similar to ours. The Jini 
system is a distributed system based on the idea of 
federating groups of users and the resources required by 
those users. The overall goal of the system is to turn a 
network into a flexible, easily administered tool on which 
human and computational clients can find resources. One 
of the end goals of the Jini system is to provide users easy 
access to resources. Jini boasts the capability for modeling 
humans as resources, allows for resource hierarchies, and 
provides ways to query a resource repository using a 
resource template that is very similar to resource queries in 
our suggested approach. 

7 EVALUATION AND FUTURE WORK 
In an earlier paper [13], we describe some experience we 
have had in applying an earlier version of this resource 
management system. Most of this experience has come 
from integrating this system with the Little-JIL process 
modeling system [10]. We have used this system to model 
processes for robot coordination, negotiations, information 
warfare scenarios, data mining and software engineering 
processes such as collaborative design and regression 
testing. This experience has confirmed that the features 
described in this paper are of substantial value. 

Future work includes addition of a tracking mechanism into 
the Resource Manager that would help draw inferences 
about projected resource needs and utilization. A 
mechanism of this sort would enable users to gauge the 
gains and losses that would be likely to result from making 
changes in resource availability, or from making changes to 
the activity itself. 

Also, our resource querying mechanism needs to be able to 
find “best-match” resources, based on user-specified 
queries. Despite having this, it is expected that on several 
occasions, multiple instances in the model may satisfy the 
query. At this point, we need some kind of mechanism to 
either pick one of many instances or help decide which the 
best instance is. This has prompted us to think of 
developing and embedding in the resource manager, 
various resource selection processes. These processes may 
vary from simple “pick-any-one” processes to more 
complex negotiation processes, depending on what exactly 
is required by the activity. 
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Finally we need to gain more experience in the use of the 
resource manager to support planning and coordination 
systems. To this effect, we are continually developing 
processes to evaluate how well the resource management 
system meets the needs of activity coordination. 
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